新聞動(dòng)態(tài)

News Center

使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)

發(fā)布日期:
2022-12-19

瀏覽次數(shù):



在消費(fèi)類電子產(chǎn)品領(lǐng)域,工程師可利用激光雷達(dá)實(shí)現(xiàn)眾多功能,如面部識(shí)別和3D映射等。盡管激光雷達(dá)系統(tǒng)的應(yīng)用非常廣泛而且截然不同,但是 “閃光激光雷達(dá)” 解決方案通常都適用于在使用固態(tài)光學(xué)元件的目標(biāo)場(chǎng)景中生成可檢測(cè)的點(diǎn)陣列。憑借具有針對(duì)小型封裝結(jié)構(gòu)但可獲取三維空間數(shù)據(jù)方面的優(yōu)勢(shì),固態(tài)激光雷達(dá)系統(tǒng)在智能手機(jī)和筆記本電腦等消費(fèi)類電子產(chǎn)品中日益普及。在這個(gè)系列的文章中,我們將探討如何使用 Ansys Zemax OpticStudio 對(duì)此類系統(tǒng)進(jìn)行建模,包括從序列初始設(shè)計(jì)到集成機(jī)械外殼的整個(gè)流程。該文章為閃光激光雷達(dá)系統(tǒng)建模系列文章的第二篇。




01 簡(jiǎn)介


激光雷達(dá)系統(tǒng)在工業(yè)界中有著多種場(chǎng)景下的應(yīng)用,對(duì)應(yīng)于不同種類的激光雷達(dá)系統(tǒng)(比如用于掃描元件或確定視野的系統(tǒng)等),本示例將主要探索如何使用衍射光學(xué)元件來(lái)復(fù)制光源陣列在目標(biāo)場(chǎng)景中的投影。成像透鏡系統(tǒng)隨后可觀察到投影的光源陣列,以獲取投射光線的飛行時(shí)間信息,進(jìn)而生成投影點(diǎn)的深度信息。


在本文中,我們將介紹如何將上篇的序列模式起始結(jié)構(gòu)進(jìn)行轉(zhuǎn)換,并向非序列模型中添加更多細(xì)節(jié)。我們還將應(yīng)用 ZOS-API 在閃光激光雷達(dá)系統(tǒng)中生成一些時(shí)間飛行結(jié)果。



02 初始轉(zhuǎn)換至非序列模式


為了觀察這兩個(gè)模塊結(jié)合成為整個(gè)系統(tǒng)將如何工作,我們可以在每個(gè)系統(tǒng)中使用 “轉(zhuǎn)換至非序列模式組” 工具(可以在?文件選項(xiàng)卡…轉(zhuǎn)換至非序列模式組?中找到)來(lái)生成照明和成像子系統(tǒng)的非序列模型。在照明模塊(清除多重結(jié)構(gòu)編輯器,只保留一種結(jié)構(gòu))和成像模塊中,轉(zhuǎn)換至非序列模式組工具將使用以下設(shè)置:


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)


以下為非序列模式下各子系統(tǒng)的轉(zhuǎn)換輸出結(jié)果:


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)



03 組合模塊


在此階段,我們可以進(jìn)行一些編輯,以更輕松地組合模塊。在結(jié)尾裝配中,我們假設(shè)照明模塊的光源和成像模塊的傳感器在同一個(gè)平面上,因?yàn)槲覀兛梢韵胂笏鼈冊(cè)谡麄€(gè)系統(tǒng)中共享同一個(gè)電路板。我們?cè)诜切蛄心J街胁捎玫目傮w方法是:


對(duì)于照明模塊而言:

  • 重新定義模塊中物體的布局,使光源位于全局 Z 位置原點(diǎn)

  • 在模塊的 “像平面” 上移除三個(gè)探測(cè)器中的兩個(gè),增加其余探測(cè)器的尺寸,并應(yīng)用鏡面材料(因?yàn)檫@結(jié)果會(huì)起到散射壁面的作用)

  • 刪除三個(gè)光源中的兩個(gè),因?yàn)槲覀兒芸鞎?huì)編輯剩余的光源作為二極管光源陣列


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)


對(duì)于成像模塊而言:

  • 從模塊中移除光源

  • 移除三個(gè)檢測(cè)器中的兩個(gè),并根據(jù)序列模式文件的尺寸增加其余檢測(cè)器的尺寸

  • 重新定義像平面的物體參考擺放情況


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)

包含上述修改的示例文件,已作為本文章附件添加至附件下載部分。示例文件分別為:“FlashLidar_Emitter_DiffGrat_PostEdit.ZAR” 以及 “FlashLidar_Receiver_PostEdit.ZAR”。


調(diào)整后,我們可以通過(guò)復(fù)制和粘貼將成像模塊物體插入到照明模塊的非序列元件編輯器中。粘貼后,我們需要確保為插入后的物體重新編號(hào) “參考物體 (Reference Object)” 參數(shù),以指向新的物體編號(hào)(如適用的話),例如我們的成像模塊光學(xué)元件現(xiàn)在需要指向組合模型中的 “物體10”(“成像模塊參考” 為空物體)。然后使用參考空物體編輯 X 位置來(lái)確定模塊的布局:


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)


04 完整裝配體的成效細(xì)節(jié)


為了確定模型,我們首先需要更新光源定義,以整合關(guān)于陣列和發(fā)射特性的其他詳細(xì)信息。我們使用以下參數(shù)將光源從橢圓光源(Source Ellipse)轉(zhuǎn)換到二極管(Source Diode)光源物體:

  • 參考物體:1

  • X-/Y-發(fā)散角:5°

  • X-/Y-超高斯系數(shù):0

  • X’/Y’-數(shù)量:5

  • Delta-X/Y:32mm


在我們的場(chǎng)景中生成完整的光斑陣列需要修改衍射光柵(Diffraction Grating)物體的物體屬性(Object Properties)。對(duì)于每個(gè)衍射光柵,我們通過(guò)衍射(Diffraction)選項(xiàng)卡中的 “分裂” 設(shè)置來(lái)定義衍射級(jí)次,使用 “按以下表格分裂” 實(shí)現(xiàn)每個(gè)衍射級(jí)次的理想、均勻傳輸。為簡(jiǎn)單起見(jiàn),將 I.99999999 的理想膜層定義放在兩個(gè)模塊所有元件的前后表面上。通過(guò)這些修改,一旦允許在 3D視圖(3D Viewer)中分裂光線,我們就可以查看完整的投影點(diǎn)陣列:


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)


為了使壁面物體作為散射表面,在 “散射壁面” 探測(cè)器上應(yīng)用了朗伯散射配置文件。同樣,我們還通過(guò)設(shè)置 I.0 膜層(確保100%反射)和散射分?jǐn)?shù)(Scatter Fraction)值為1,使壁面成為理想的反射和散射表面。然而,在當(dāng)前定義中,由于廣角散射,散射光線很少能追跡到成像模塊。因此,重點(diǎn)采樣(Importance Sampling)可用于迫使光線向任何指定物體的頂點(diǎn)散射(參閱文章“如何利用重點(diǎn)采樣進(jìn)行高效的散射建?!?(英文原文),了解關(guān)于重點(diǎn)采樣工作原理的更多詳情)。我們將使用的目標(biāo)是 “物體11”,即成像模塊的物理孔徑,尺寸值為 0.7 mm。


當(dāng)瞄準(zhǔn)目標(biāo)物體時(shí),由于重點(diǎn)采樣會(huì)降低散射光線的功率(以考慮光線從表面法線散射時(shí)的實(shí)際功率降低),因此需要降低極小相對(duì)光線強(qiáng)度(Minimum Relative Ray Intensity),以允許 OpticStudio 追跡這些較低能量的光線。在這種情況下,設(shè)置為 1e-8 可以追跡光線,我們可以看到光線現(xiàn)在可以離開(kāi)照明模塊,由成像模塊捕獲。應(yīng)該注意的是,在兩個(gè)模塊之間引入了一個(gè)吸收矩形物體,以防止照明系統(tǒng)的雜散光影響成像透鏡探測(cè)器。


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)



現(xiàn)在,我們可以觀察投影到壁面上的點(diǎn)列圖案以及通過(guò)成像透鏡觀察到的點(diǎn)列圖案。該步驟的示例文件已經(jīng)保存為:“FlashLidar_FullSystem.ZAR”:


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)


05 時(shí)間飛行考慮


激光雷達(dá)系統(tǒng)通過(guò)測(cè)量光到達(dá)探測(cè)器時(shí)的飛行時(shí)間來(lái)獲得場(chǎng)景的深度信息。例如,傳感器通常是時(shí)間門控的,以捕獲從觀察到的場(chǎng)景中散射的入射光束的信息。


通過(guò)利用 ZOS-API 來(lái)構(gòu)建用戶分析(User Analysis),我們可以獲得落在結(jié)果矩形探測(cè)器上的每條光線的飛行時(shí)間數(shù)據(jù);通過(guò)解析 ZRD 文件并分析落在成像模塊傳感器上的光線路徑長(zhǎng)度,從而獲得所觀察場(chǎng)景的深度。知識(shí)庫(kù)文章 “如何使用ZOS-API創(chuàng)建飛行時(shí)間用戶分析” 包含了構(gòu)建這類用戶分析的更多信息,我們將直接使用該分析。

“如何使用ZOS-API創(chuàng)建飛行時(shí)間用戶分析” https://support.zemax.com/hc/zh-cn/articles/1500005577762


在閃光激光雷達(dá)系統(tǒng)中,添加了一些相關(guān)的幾何結(jié)構(gòu)用例,例如一個(gè)小型桌子模型和一個(gè)用作手勢(shì)識(shí)別的(極為簡(jiǎn)化)拳頭大小的球體。


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)


在運(yùn)行用戶分析(User Analysis)之前,需要先進(jìn)行光線追跡,并且需要在光線追跡控制(Ray Trace Control)窗口中保存光線追跡數(shù)據(jù)。然后,用戶分析將能夠讀取保存的.ZRD文件。在分析中使用以下設(shè)置,我們可以獲得以下深度輸出:


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)

使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)


有了這些結(jié)果,我們可以區(qū)分場(chǎng)景中的不同特性以及它們?cè)诓煌疃鹊奈恢?。例如,我們粗略?“拳頭” 示意球體位于用戶分析輸出的左上角,而位于桌子模型頂部的杯子則位于場(chǎng)景右上角稍遠(yuǎn)一些的位置。為了進(jìn)行演示,我們用矩形光源(Source Rectangle)使光源的全部區(qū)域發(fā)光,使場(chǎng)景充滿照明,從而更容易看到整個(gè)場(chǎng)景的深度信息:


使用OpticStudio進(jìn)行閃光激光雷達(dá)系統(tǒng)建模(中)


通過(guò)設(shè)計(jì)閃存激光雷達(dá)系統(tǒng)的照明模塊和成像模塊,我們可以在結(jié)果的探測(cè)器平面上求解所投影的點(diǎn)陣列,并利用 ZOS-API 創(chuàng)建用戶分析,以獲取點(diǎn)陣列所到達(dá)的幾何結(jié)構(gòu)的深度信息。能夠求解所觀察場(chǎng)景的特征并檢索距離信息,意味著這些信息能夠傳送至計(jì)算軟件生成圖像供用戶查看,并利用用戶的運(yùn)動(dòng)數(shù)據(jù)在計(jì)算機(jī)生成的場(chǎng)景中產(chǎn)生一些變化。



06 結(jié)論


在本文章中,我們已經(jīng)介紹了序列模式下的閃光激光雷達(dá)照明和成像模塊是如何轉(zhuǎn)換到非序列模式的。我們還演示了如何改進(jìn)模型,以及將兩個(gè)模型合并到單個(gè) OpticStudio 文件中的一些方法。此外,還定義了光源的其他細(xì)節(jié),并定義了遠(yuǎn)距離壁面上的散射屬性,以驗(yàn)證穿過(guò)整個(gè)系統(tǒng)的光線追跡。在后面,我們討論了 ZOS-API 中內(nèi)置的自定義用戶分析的用法,該分析返回了全閃光激光雷達(dá)系統(tǒng)的時(shí)間飛行數(shù)據(jù)。


相關(guān)推薦

【Lumerical系列】一種高效多模耦合/(解)復(fù)用的新方案
本期文章將介紹一種通過(guò)引入硅平面光波電路(PLC)作為中間體來(lái)實(shí)現(xiàn)高效多...
用于光子集成電路的集成微透鏡和光柵耦合器
本文介紹了一種用于光子集成電路光纖-波導(dǎo)耦合系統(tǒng)的多尺度仿真工作流程。光...
【2024 R2】Ansys Fluent 電池?zé)崾Э睾彤a(chǎn)氣模型案例教程
01簡(jiǎn)要說(shuō)明‐ Ansys Fluent 2024R2版本正式發(fā)布了電池...
Zemax | 如何在OpticStudio內(nèi)對(duì)斜切端面光線進(jìn)行建模
本文介紹了如何在 OpticStudio 中對(duì)具有一定角度斜切端面的接收...